Computer Simulation of Robotic Device Components in 3D Printer Manufacturing
https://doi.org/10.7463/aplts.0516.0848154
Abstract
The paper considers a relevant problem "Computer simulation of robotic device components in manufacturing on a 3D printer" and highlights the problem of computer simulation based on the cognitive programming technology of robotic device components. The paper subject is urgent because computer simulation of force-torque and accuracy characteristics of robot components in terms of their manufacturing properties and conditions from polymeric and metallic materials is of paramount importance for programming and manufacturing on the 3D printers. Two types of additive manufacturing technologies were used:
1. FDM (Fused deposition modeling) - layered growth of products from molten plastic strands;
2. SLM (Selective laser melting) - selective laser sintering of metal powders, which, in turn, create:
• conditions for reducing the use of expensive equipment;
• reducing weight and increasing strength through optimization of the lattice structures when using a bionic design;
• a capability to implement mathematical modeling of individual components of robotic and other devices in terms of appropriate characteristics;
• a 3D printing capability to create unique items, which cannot be made by other known methods.
The paper aim was to confirm the possibility of ensuring the strength and accuracy characteristics of cases when printing from polymeric and metallic materials on a 3D printer. The investigation emphasis is on mathematical modeling based on the cognitive programming technology using the additive technologies in their studies since it is, generally, impossible to make the obtained optimized structures on the modern CNC machines.
The latter allows us to create a program code to be clear to other developers without cost, additional time for development, adaptation and implementation.
Year by year Russian companies increasingly use a 3D-print system in mechanical engineering, aerospace industry, and for scientific purposes. Machines for the additive production, well integrated in the production cycle, allow not only to reduce costs and save time, but also to begin performing more complex tasks.
The ability for quick understanding the program code written by other users and adaptation to other projects creates the preconditions for a good economic effect, strength through the use of already existing projects or models of standard forms. This is possible because, based on the data on three-dimensional detail layout scanning, the 3D technology allows us to have a digital copy to be adapted for further implementation on the 3D-printer in any potential project, taking into account the specification of each project.
Analysis of these problems gives impetus for further research in the field of mechanical engineering and robotics technology.
Conclusion: A process of simulation and bionic design of the case has been done; fixation was across frontal cross-section. Margin of safety for the case (option 1) made from metallic powder is sufficient. As seen from the two proposed options of the device case the first option is more preferable since there is a collapse potential in fixing points of the option 2 made from the ABC plastic.
About the Author
M. A. KiselevRussian Federation
References
1. Александрова В.В. Компьютерное моделирование и симуляция трехмерных тел, фигур и сцен: учеб. пособие. СПб.: Анатолия, 2008. 131 с.
2. Александров В.В., Сарычев В.А. Цифровые программируемые технологии // Информационно-измерительные и управляющие системы. 2010. Т. 8. № 11. С. 3 – 9.
3. Александров В.В., Александрова В.В., Зайцева А.А., Хурс С.П. Цифровая технология 3D-промышленного производства // Труды конф. «Региональная информатика (РИ-2010)». СПб.: СПОИСУ, 2011. С. 207−210.
4. Брехов О.М., Корнеенкова А.В., Кордовер К.А., Мухин Н.Ю., Орлова Е.А., Тузов И.В. Методика быстрого прототипирования аппаратно-программного комплекса на основе технологического базиса ПЛИС большой емкости и настраиваемых библиотек // Успехи современной радиоэлектроники. 2012. № 1. С. 91 − 96.
5. Городняя Л.В. Основы функционального программирования: учеб. пособие. М.: Интернет-Университет информационных технологий, 2004. 272 с.
6. Зленко М. Технологии быстрого прототипирования – послойный синтез физической копии на основе 3D – CAD – модели // CAD/ CAM/ CAE Observer. 2003. № 2 (11). С. 2 – 9.
7. Можаров М.С., Коткин С.Д. О развитии содержательной линии «Моделирование и формализация» в школьном курсе «Информатика и ИКТ» // Информатика и образование. 2010. № 4. С. 95 – 99.
8. Робототехника и гибкие автоматизированные производства: учеб. пособие. В 9 кн. Кн. 5. Моделирование робототехнических систем и гибких автоматизированных производств / С.В. Пантюшин, В.М. Назаретков, О.А.Тягунов и др.; под ред. И.М. Макарова. М.: Высш. шк., 1986. 175 с.
9. Чикурова Е.И. Особенности когнитивного стиля программистов // Психология XXI века: Материалы Междунар. науч.-практич. конф. молодых ученых. СПб.: Изд-во С.-Петербургского ун-та, 2011. С.420-421.
10. Persson A.S.K., Andersson M., Oden A., Sandborgh-Englund G. Computer aided analysis of digitized dental stone replicas by dental CAD/CAM technology // Dental Materials. 2008. Vol. 24. № 8. Р. 1123 − 1130. DOI: 10.1016/j.dental.2008.01.008
11. Designmation: Making of Avatar − Use of Autodesk MotionBuilder // http://designmation.blogspot.ru/2010/02/making-of-avatar-use-of-autodesk.html
12. Лопота А.В., Юревич Е.И. Этапы и перспективы развития модульного принципа построения робототехнических систем // Научно-технические ведомости СПбГПУ. 2013. № 1. С. 98 – 103.
13. Экстремальная робототехника. Нано-, микро- и макророботы (ЭР–2009): Материалы XX междунар. науч.-техн. конф. Таганрог: Изд-во ТТИ ЮФУ, 2009. 390 с.
14. Рычков С.П. Моделирование конструкций в среде MSC.visualNastran для Windows: М.: НТ-Пресс, 2004. 552 с.
Review
For citations:
Kiselev M.A. Computer Simulation of Robotic Device Components in 3D Printer Manufacturing. Machines and Plants: Design and Exploiting. 2016;(5):1-16. (In Russ.) https://doi.org/10.7463/aplts.0516.0848154