The Importance of Computational Modeling of Large Pumping Stations
Abstract
About the Authors
S. M. Bozh'evaRussian Federation
Moscow
V. O. Lomakin
Russian Federation
Moscow
References
1. Berezin S.E. Nasosnye stantsii s pogruzhnymi nasosami. Raschety i konstruirovanie. [Pumping stations with submersible pumps. Calculations and design]. Moscow, Stroiizdat Publ., 2008. 160 p. (in Russian).
2. Samokhin V.N., ed. Kanalizatsiya naselennykh mest i promyshlennykh predpriyatii [Sewerage of settlements and industrial enterprises]. Moscow, Stroiizdat, 1981. 639 p. (in Russian).
3. Bashta T.M., Rudnev S.S., Nekrasov B.B. and others. Gidravlika, gidromashiny i gidroprivody. Uchebnik dlya mashinostroitel'nykh vuzov. [Hydraulics, hydraulic machines and hydraulic drives. Textbook for engineering universities] 2nd ed. Moscow, Mashinostroenie Publ., 1982. 423 p. (in Russian).
4. Bazhenov V.I. Matematicheskoe modelirovanie gidrodinamicheskih i vodoochistnyh processov [Mathematical modeling of hydrodynamic and water treatment processes]. Jakovlevskie chtenija. 9-ya nauchno-tekhnicheskaya konferentsiya: sbornik dokladov. [Jakovlev’s read. 9 th scientific and technical conference: abstracts]. Moscow, 2014. (in Russian).
5. Bazhenov V.I., Petrov V.I., Bukharov K.D., Ivanov A.V., Filippov G.G Development and numerical simulation of fish protection facilities on the basis of the flow-forming device. Gidrotekhnika = Hydraulic, 2014, no. 1, pp. 21-28. (in Russian).
6. Bazhenov V.I., Epov A.N., Gusarov O.S. The application of the method of computer simulation of the hydrodynamics of flows (CFD) to optimize the design of the aeration tank. Vodosnabzhenie i kanalizacija = Water and sanitation, 2009. no. 3. pp. 47-55. (in Russian).
7. American National Standard for Pump Intake Design. ANSI/HI, 2012.
8. SP 32.13330.2012. Kanalizatsiya. Naruzhnyie seti i sooruzheniya [Set of rules 32.13330.2012. Sewerage. Pipelines and wastewater treatment plants]. Moscow, Ministerstvo regionalnogo razvitiya Rossiyskoy Federatsii, 2012.
9. Patankar S. Numerical Heat Transfer and Fluid Flow. New York, Hemisphere Publishing Corporation, 1980. 197 p.
10. Lomakin V.O., Petrov A.I. Verification of computation results of the АХ 50-32-200 centrifugal pump wet part in the software package STAR CCM +. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceeding of Higher Educational Institutions. Machine Building. Special edition, 2012. p. 6-9. (in Russian).
11. Lomakin V.O., Petrov A.I., Kuleshova M.S. Investigation of two-phase flow in axialcentrifugal impeller with hydrodynamic modeling methods. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2014. no. 9. Available at: http://technomag.bmstu.ru/doc/725724.html, accessed 23.09.2014. (in Russian).
12. Brennen C.E. Fundamentals of Multiphase Flows. Cambridge: Cambridge University Press, 2005. 410 p.
13. David C. Wilcox. Turbulence Modeling for CFD. 3-е изд. DCW Industries, 2006. 515 p.
14. Gulich J. F. Centrifugal Pumps. 2-е изд. Springer-Verlag Berlin Heidelberg, 2010. 964 p.
15. Daqing Zh., Yuan Zh., Ge X. CFD Simulation of the Whole Pump Station Inlet Flow Field. ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. Volume 1: Symposia, part A and B, Jacksonville, 2008, pp. 973-977. DOI:10.1115/FEDSM2008-55235
16. Ding H., Visser F.C., Jiang Y., Furmanczyk M. Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications. Journal of Fluids Engineering, 2011. no. 133(1). DOI:10.1115/1.4003196
Review
For citations:
Bozh'eva S.M., Lomakin V.O. The Importance of Computational Modeling of Large Pumping Stations. Machines and Plants: Design and Exploiting. 2015;(4):53-75. (In Russ.)