Машины и Установки

проектирование, разработка и эксплуатация

Сетевое издание MOO "Стратегия объединения" http://maplants-journal.ru Ссылка на статью:

//Машины и установки: проектирование,

разработка и эксплуатация.

Электрон. журн. 2024. № 4. С. 34 – 40

DOI:

Представлена в редакцию: 09.12.2024 Принята к публикации: 12.12.2024

© MOO «Стратегия объединения»

УДК 621.86

Исследования и разработки кафедры РК4 «Подъемно-транспортные системы» для создания современных приборов безопасности грузоподъемной техники

Назаров А.Н.

alexnazavr@yandex.ru

МГТУ им. Н. Э. Баумана (Москва, Россия)

В статье представлены результаты, полученные в ходе диссертационного исследования, посвященного разработке прибора безопасности кранов мостового типа нового поколения. Описан функционал прибора. Приведена оценка качества выполняемых функций, полученная в лабораторном и натурных экспериментах.

Ключевые слова: кафедра РК4, мостовой кран, приборы безопасности, ограничитель грузоподъемности, регистратор параметров работы, динамика механизма подъема работы.

На кафедре РК4 «Подъемно-транспортные системы» в 2014 году доцентом Ивановым С.Д. было основано направление промышленной безопасности. В рамках данного направления проходит как обучение студентов, так и ведутся работы по созданию перспективных технических средств обеспечения безопасности И модернизации существующих. Большинство работ выполнены студентами в рамках проектирования и курсовых научно-исследовательских работ. В год столетнего юбилея кафедры РК4 была защищена первая кандидатская диссертация, выполненная на базе кафедры по направлению промышленной безопасности.

В рамках работы «Повышение безопасности работы кранов мостового типа на основе алгоритмической обработки информации о характере их использования» был создан опытный образец комплексного прибора безопасности [1]. Прибор, функциональная схема которого показана на рис. 1, сочетает в себе функции ограничения грузоподъемности, регистрации параметров и автоматизированной настройки путем анализа динамических процессов тестовых подъемов контрольных грузов.

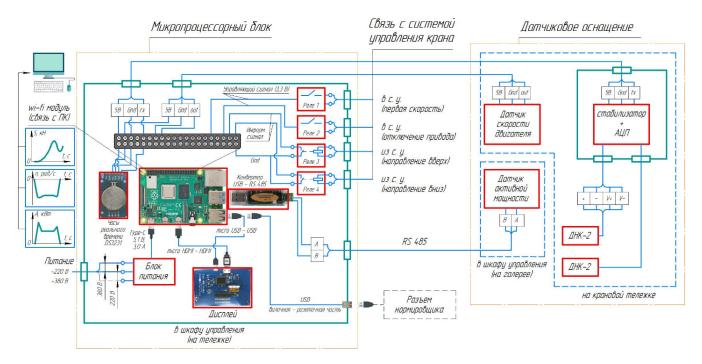
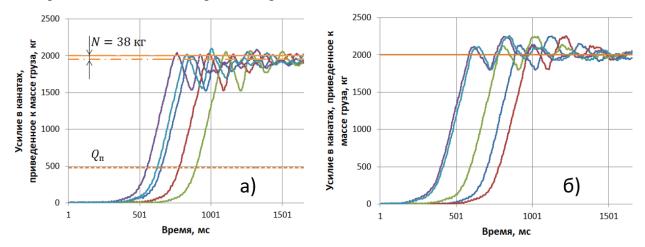


Рис. 1. Функциональная схема опытного образца прибора безопасности

Проведенное исследование подготовило теоретическую и экспериментальную базу для создания нового поколения приборов безопасности, над серийной версией которого в данный момент ведут работы инженеры специализированной организации ООО «ИТЦ «КРОС».

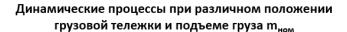

Задача создания новых алгоритмов (ограничения грузоподъемности, регистрации параметров) определила потребность в совершенствовании классических динамических моделей. Так, на основе работ преподавателей кафедры РК4 прошлых лет (Николая Александровича Лобова и Владимира Петровича Запятого) удалось описать обобщенный цикл работы механизма подъема кранов с релейно-контакторной или частотной системой управления при работе с грузами во всем диапазоне масс и произвольном наборе команд управления.

Для обеспечения возможности практического применения модели разработан способ экспериментального определения жесткости канатного подвеса для кранов мостового типа, на который получен патент на изобретение [2]. Получена зависимость, позволяющая определять жесткость металлоконструкции крана в зависимости от положения грузовой тележки на основе экспериментальных данных. А также получен набор формул для определения усилия двигателя кранов с частотной или релейно-контакторной системой управления в установившихся и переходных режимах [3].

На основе разработанной динамической модели получены зависимости порогов срабатывания алгоритма ограничителя грузоподъемности от динамических параметров крана и механизма подъема [1,4], что дало возможность автоматизировать процесс настройки прибора.

Применительно к функции регистрации параметров обоснован состав первичной информации: усилие в канатах, перемещение, скорость и ускорение вала двигателя, активная мощность привода, напряжение и частота сети. Модифицирован алгоритм определения режима работы крана в целом (за счет применения фильтра скользящего среднего [5,6] и функции контроля установившегося движения) и разработан алгоритм определения режима работы механизмов, основанный на обработке электрических параметров двигателя [7].

Лабораторные и натурные эксперименты подтвердили работоспособность прибора. На лабораторном кране (грузоподъемность 2 тонны) достигнуто снижение динамической нагрузки при использовании ограничителя грузоподъемности (ОГП). Результаты экспериментов показаны на рис. 2 и представлены в табл. 1.



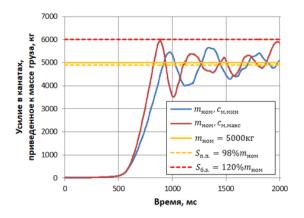

Рис. 2. График усилия в канатах а) при попытке подъеме груза запрещенной массы (с ОГП); б) подъем без ОГП груза 125% от номинального

Табл. 1. Коэффициент динамичности с / без ОГП

		• • • • • • • • • • • • • • • • • • • •				
		1	2	3	4	5
с ОГП	$Q_{ m cp}$	1963	1964	1972	1965	1968
	$k_{\scriptscriptstyle \mathcal{A}}$	1,066	1,050	1,049	1,061	1,067
без ОГП	$k_{\scriptscriptstyle m I}$	1,124	1,126	1,123	1,123	1,128

Продемонстрирована надежная работа пробора при произвольном положении грузовой тележки (рис. 3). Эксперимент проведен на однобалочном мостовом кране (г/п 5 тонн), установленном на ООО «ИТЦ «КРОС».

Динамические процессы при различном положении грузовой тележки и подъеме груза 125%m_{ном}

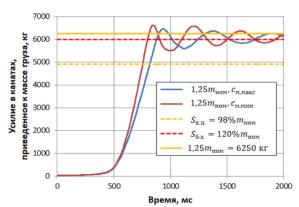


Рис. 3. Работа ОГП при различном положении грузовой тележки

Натурный эксперимент на кране (грузоподъемность 15 тонн), установленном на Тихвинском вагоностроительном заводе, показал снижение динамической нагрузки во всём диапазоне масс поднимаемых грузов в сравнении со штатной системой безопасности ControlPro компании KoneCranes. Результаты эксперимента представлены на рис. 4.

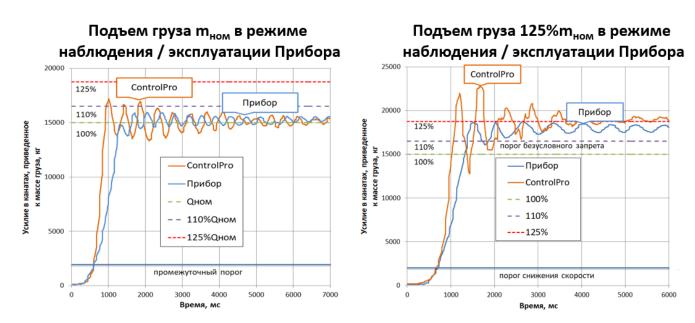


Рис.4. Усилие в канатах при подъеме номинального / запрещенного для подъема груза

Точность определения массы груза в реальном цикле составила 1,5% при требовании ГОСТ 33713-2015 в 3% (с грузами массой 8, 12, 15 тонн).

Таким образом, проведенное на кафедре РК4 исследование позволило наметить пути повышения эксплуатационных характеристик приборов безопасности и в ряде функций достичь уровня зарубежных образцов.

Список литературы

- 1. Назаров, А. Н. Алгоритмическая обработка объективной информации о характере работы кранов мостового типа / А. Н. Назаров, С. Д. Иванов // Энерго-ресурсосберегающие технологии и оборудование в машиностроительной, дорожной и строительной отраслях 2023 : Материалы международной научно-практической конференции, Белгород, 21–23 сентября 2023 года. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, 2023. С. 178-184. EDN WGOGHA.
- 2. Патент № 2803775 С1 Российская Федерация, МПК G01М 5/00. Способ экспериментального определения жесткости канатного подвеса для кранов мостового типа : № 2022135212 : заявл. 29.12.2022 : опубл. 19.09.2023 / А. Н. Назаров, С. Д. Иванов, В. А. Потапов ; заявитель Закрытое акционерное общество "Инженерно-технический центр "КРОС". EDN ZNOAHV.
- 3. Назаров, А. Н. Движущее усилие двигателя механизма подъема кранов мостового типа в реальных условиях эксплуатации / А. Н. Назаров // Вестник Сибирского государственного автомобильно-дорожного университета. 2023. Т. 20, № 1(89). С. 34-50. DOI 10.26518/2071-7296-2023-20-1-34-50. EDN DJBHGB.

- 4. Назаров, А. Н. Исследование влияния работы ограничителя грузоподъемности с промежуточными порогами на безопасность кранов мостового типа / А. Н. Назаров, С. Д. Иванов // Машины и установки: проектирование, разработка и эксплуатация. 2023. № 1. С. 41-52. EDN SZRVVB.
- 5. Михалев, А. В. Применение алгоритма скользящего среднего для задачи определения массы груза / А. В. Михалев, А. Н. Назаров // Машины и установки: проектирование, разработка и эксплуатация. 2023. № 2. С. 44-57. EDN XLXJRI.
- 6. Назаров, А. Н. Использование алгоритма весоизмерения на основе фильтра скользящего среднего в регистраторе параметров работы мостового крана / А. Н. Назаров, С. Д. Иванов // Вестник Сибирского государственного автомобильно-дорожного университета. 2023. Т. 20, № 4(92). С. 418-431. DOI 10.26518/2071-7296-2023-20-4-418-431. EDN CBIJMP.
- 7. Иванов, С. Д. Оценка применимости электрических параметров привода для определения нагрузки на механизм подъема кранов мостового типа / С. Д. Иванов, А. Н. Назаров // Вестник Сибирского государственного автомобильно-дорожного университета. 2022. Т. 19, № 1(83). С. 36-47. DOI 10.26518/2071-7296-2022-19-1-36-47. EDN XZSFJQ.

ABTOP

Назаров Александр Николаевич, ассистент кафедры «Подъемно-транспортные системы» МГТУ им. Н.Э. Баумана, (105005, Москва, 2-я Бауманская ул., д. 5), кандидат технических наук, <u>alexnazavr@yandex.ru</u>

Machines & Plants Design & Exploiting

Electronic journal International Public Organization "Integration strategy" http://maplants-journal.ru Link to the article: //Machines and Plants:Design and Exploiting. 2024. № 4. pp. 34 – 40.

DOI:

Received: 09.12.2024 Accepted for publication: 12.12.2024

© Interntional Public Organization "Integration strategy"

Research and development of the RC4 Department "Lifting and transport systems" for the creation of modern safety devices for hoisting machines

Alexander N. Nazarov

alexnazavr@yandex.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

The article presents the results obtained during the dissertation research on the development of a new generation bridge crane safety device. The functionality of the device is described. An assessment of the quality of the functions performed, obtained in laboratory and field experiments, is given.

Keywords: RC4 department, overhead crane, safety devices, capacity limiter, recorder of operation parameters, dynamics of hoisting mechanism.

References

- 1. Nazarov, A. N. Algorithmic processing of objective information about the nature of the work of bridge-type cranes / A. N. Nazarov, S. D. Ivanov // Energy-resource-saving technologies and equipment in machine-building, road and construction industries 2023: Materials of the international scientific and practical conference, Belgorod, September 21-23, 2023. Belgorod: Belgorod State Technological University named after V.G. Shukhov, 2023. pp. 178-184. EDN WGOGHA.
- 2. Patent No. 2803775 C1 Russian Federation, IPC G01M 5/00. A method for experimentally determining the stiffness of a rope suspension for overhead cranes: No. 2022135212: application. 12/29/2022: publ. 09/19/2023 / A. N. Nazarov, S. D. Ivanov, V. A. Potapov; applicant Closed Joint Stock Company "KROS Engineering and Technical Center". EDN ZNOAHV.
- 3. Nazarov, A. N. The driving force of the engine of the lifting mechanism of bridge cranes in real operating conditions / A. N. Nazarov // Bulletin of the Siberian State Automobile and Road University. 2023. Vol. 20, No. 1(89). pp. 34-50. DOI 10.26518/2071-7296-2023-20-1-34-50. EDN DJBHGB.
- 4. Nazarov, A. N. Investigation of the effect of the load capacity limiter with intermediate thresholds on the safety of overhead cranes / A. N. Nazarov, S. D. Ivanov // Machines and installations: design, development and operation. 2023. No. 1. pp. 41-52. EDN SZRVVB.
- 5. Mikhalev, A.V. Application of the moving average algorithm for the task of determining the weight of a load / A.V. Mikhalev, A. N. Nazarov // Machines and installations: design, development and operation. 2023. No. 2. pp. 44-57. EDN XLXJRI.

- 6. Nazarov, A. N. The use of a weight measurement algorithm based on a moving average filter in the recorder of the parameters of the bridge crane operation / A. N. Nazarov, S. D. Ivanov // Bulletin of the Siberian State Automobile and Road University. 2023. Vol. 20, No. 4(92). pp. 418-431. DOI 10.26518/2071-7296-2023-20-4-418-431. EDN CBIJMP.
- 7. Ivanov, S. D. Assessment of the applicability of electric drive parameters to determine the load on the lifting mechanism of bridge-type cranes / S. D. Ivanov, A. N. Nazarov // Bulletin of the Siberian State Automobile and Road University. 2022. Vol. 19, No. 1(83). pp. 36-47. DOI 10.26518/2071-7296-2022-19-1-36-47. EDN XZSFJQ.

AUTHOR

Alexander N. Nazarov, department assistant of the Department of Lifting and Transport Systems at Bauman Moscow State Technical University, (105005, Moscow, 2nd Bauman str., 5), Candidate of Technical Sciences, alexander.new (105005, Moscow, 2nd Bauman str., 5), Candidate